CLASS - X

MATHEMATICS

Quadratic Equation

1. For what value of m, the equation $(m-3) x^{2}+7 x-9=0$ will not be quadratic?

Ans.: If $\mathrm{m}-3=0$ i.e., $\mathrm{m}=3$ then the given equation will not be quadratic.
2. Find the condition for which the roots of the equation $a x^{2}+b x+c=0(a \neq 0)$ are reciprocal of one another and opposite in sign.

Ans.: Since the roots of $a x^{2}+b x+c=0$ are reciprocal of one another and opposite in sign, we have the product of roots is -1 .

But from the given equation we have, the product of roots is $=\frac{c}{a}$.
$\therefore \frac{c}{a}=-1 \Rightarrow c=-a \Rightarrow c+a=0$
\therefore The required condition is $\mathrm{c}+\mathrm{a}=0$
3. For what value of K, the roots of the equation $2 x^{2}+3 x+K=0$ are real and equal?

Ans.: We know that the roots of $a x^{2}+b x+c=0$ are real and equal if $b^{2}=4 a c$.
As the roots of $2 x^{2}+3 x+K=0$ are real and equal we have $(3)^{2}=4.2 \cdot K \Rightarrow 9=8 K \Rightarrow K=\frac{9}{8}$
\therefore The value of K is $\frac{9}{8}$.
4. If α and β are the roots of the equation $5 \boldsymbol{x}^{2}+2 x-3=0$ then find the value of $\left(\frac{\alpha^{2}}{\beta}+\frac{\beta^{2}}{\alpha}\right)$.

Ans.: α and β are the roots of $5 x^{2}+2 \mathrm{x}-3=0$
$\therefore \alpha+\beta=-\frac{2}{5}$ and $\therefore \alpha \beta=-\frac{3}{5}$

$$
\begin{aligned}
\therefore \frac{\alpha^{2}}{\beta}+\frac{\beta^{2}}{\alpha} & =\frac{\alpha^{3}+\beta^{3}}{\alpha \beta}=\frac{(\alpha+\beta)^{3}-3 \alpha \beta(\alpha+\beta)}{\alpha \beta}=\frac{\left(\frac{-2}{5}\right)^{3}-3\left(\frac{-3}{5}\right)\left(\frac{-2}{5}\right)}{\frac{-3}{5}} \\
& =\frac{-\frac{8}{125}-\frac{18}{25}}{-\frac{3}{5}}=\frac{\frac{-8-90}{125}}{-\frac{3}{5}}=\frac{-\frac{98}{125}}{-\frac{3}{5}} \\
& =\left(-\frac{98}{128}\right) \times\left(-\frac{5}{3}\right)=\frac{98}{75}
\end{aligned}
$$

5. If the five times of a positive whole number is $\mathbf{3}$ less than twice the square of the number then find the number.

Ans.: Let the positive whole number be x .
$\therefore \quad$ According to the given problem, $2 x^{2}-3=5 x$

$$
\begin{aligned}
& \Rightarrow 2 x^{2}-5 x-3=0 \Rightarrow 2 x^{2}-6 x+x-3=0 \\
& \Rightarrow 2 x(x-3)+1(x-3)=0 \Rightarrow(x-3)(2 x+1)=0 \\
& \Rightarrow \text { Either } x-3=0 \text { or } 2 x+1=0 \\
& \Rightarrow x=3 \text { or } x=-\frac{1}{2}
\end{aligned}
$$

Since x is a positive whole number, $x \neq-\frac{1}{2}$.
\therefore we get $x=3$.
The required positive number is 3 .

